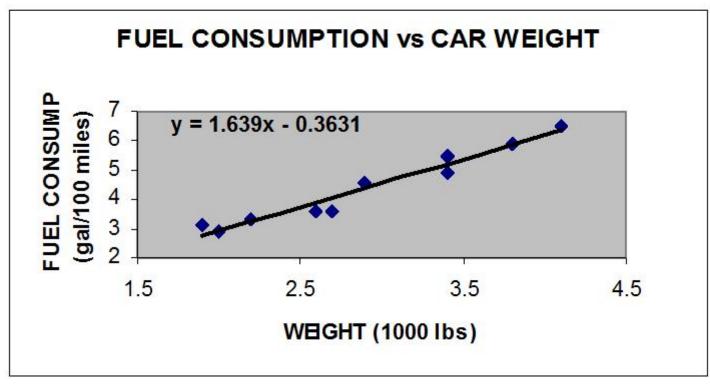
University of Basra College of Engineering Chemical Engineering Department Engineering Statistics ⇔ 🖾 😫 🛰 🗢 ः 🚺 🛇 💿 🔽 🛒 🛤 🖾 🖯 The second stage

After knowing the relationship between two variables we may be interested in estimating (predicting) the value of one variable given the value of another.

Definition:

Regression is the measure of the average relationship between two or more variables in terms of the original units of the data.



•Regression analysis is used to:

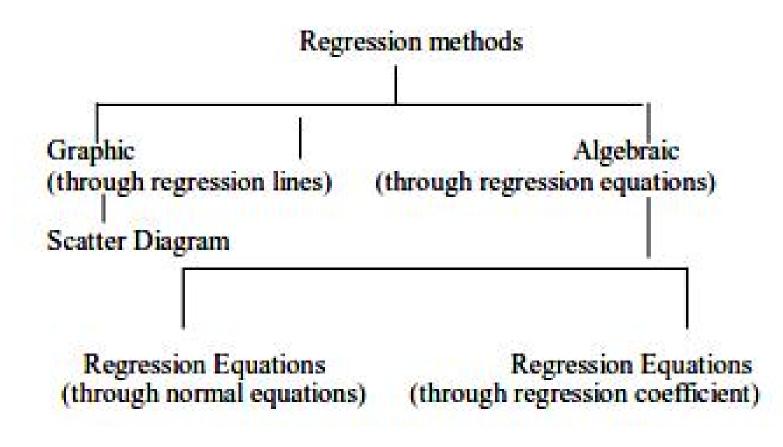
-Predict the value of a dependent variable based on the value of independent variable

-Explain the impact of changes in an independent variable on the dependent variable

Types of Regression Models Two or more One **Regression** independent variables independent variable ╶╋ **Simple Multiple Non-Linear Non-Linear** Linear Linear **Partial Total**

Methods of Regression Analysis:

The various methods can be represented in the form of chart given below:



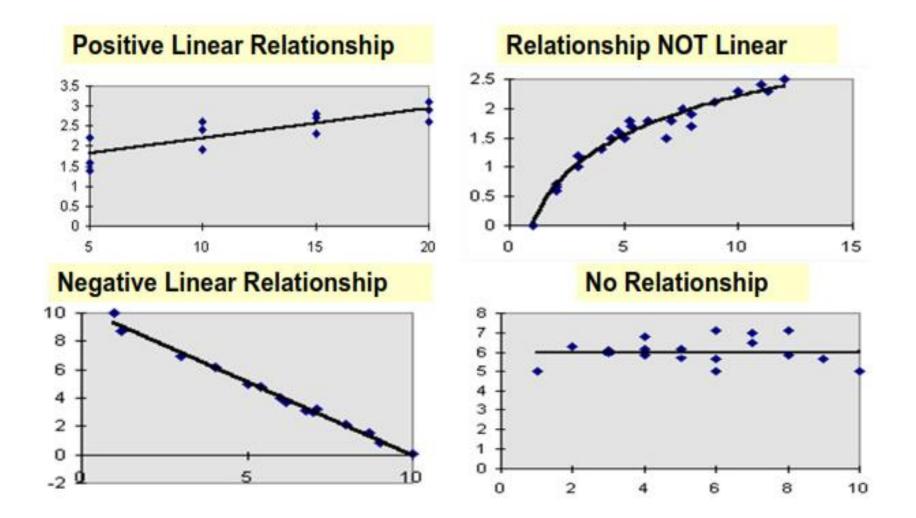
Simple Linear Regression

- The equation that describes how y is related to x and an error term s is called the <u>regression</u>
- The **simple linear** is:

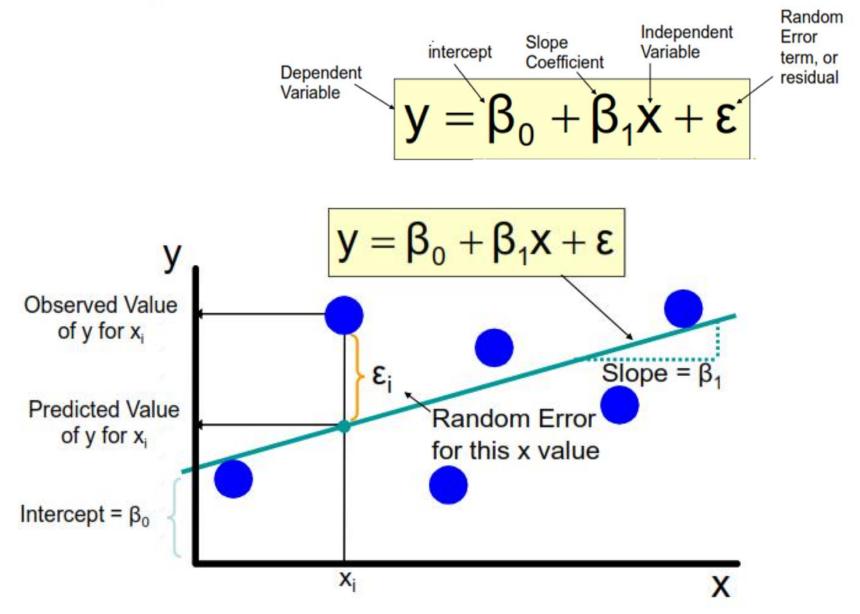
 $y = \beta_0 + \beta_1 x + \varepsilon$

- β_0 and β_1 are called **parameters of regression**.
- is a random variable called the error term.
- Only one independent variable, x
- Relationship between x and y is described by a linear function
- Changes in y are assumed to be caused by changes in x

Types of Regression

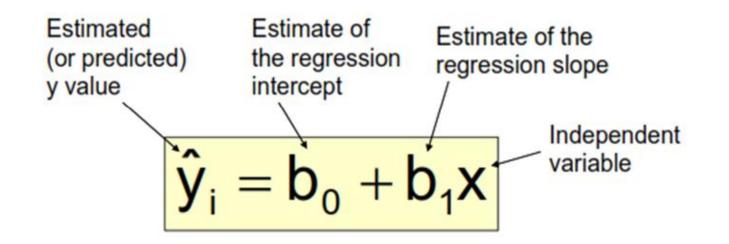


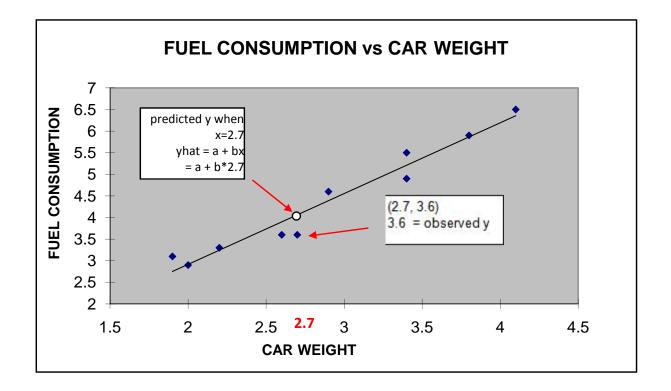
Linear Regression



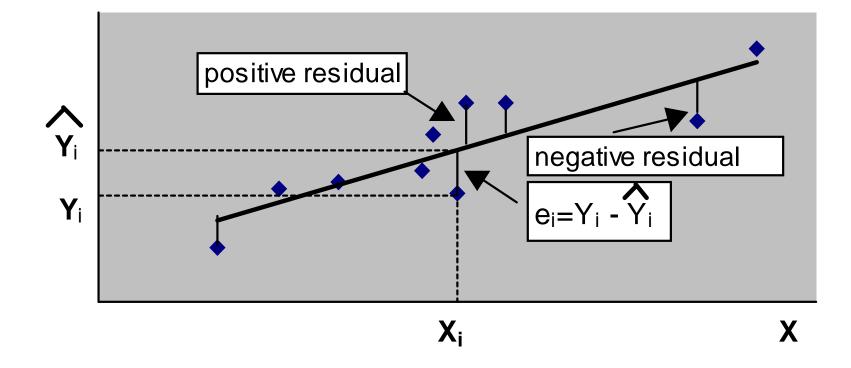
Estimated Regression

The sample regression line provides an estimate of the population regression line





Graphical Display of Residuals



The least squares method

- The method of least squares chooses the line that makes the <u>sum of</u> <u>squares of the residuals as small as possible</u>
- This line has slope \mathbf{b}_1 and intercept \mathbf{b}_0 that <u>minimizes</u>

$$\sum e^2 = \sum (y - \hat{y})^2$$
$$= \sum (y - (b_0 + b_1 x))^2$$

where:

 $y_i =$ <u>observed</u> value of the dependent variable

 $\hat{y}_i = \underline{\text{estimated}}$ value of the dependent variable

DERIVING THE LEAST SQUARES MATHOD

II. Sum of Squared Residuals:

$$\sum e_i^2 = \sum (Y_i - \dot{Y}_i)^2$$

= $\sum (Y_i - (a + bX_i))^2 = \sum (Y_i - a - bX_i)^2$
= $\sum [(Y_i - a - bX_i)(Y_i - a - bX_i)]$
= $\sum [Y_i^2 - 2aY_i - 2bX_iY_i + a^2 + 2abX_i + b^2X_i^2]$
 $\sum e_i^2 = \sum Y_i^2 - 2a \sum Y_i - 2b \sum X_iY_i + na^2 + 2ab \sum X_i + b^2 \sum X_i^2$

III. Partial Derivatives:

$$\frac{\partial \sum e_i^2}{\partial b} = -2\sum X_i Y_i + 2a \sum X_i + 2b \sum X_i^2$$
$$\frac{\partial \sum e_i^2}{\partial a} = -2\sum Y_i + 2na + 2b \sum X_i$$

IV. Set Derivatives to Zero, Manipulate Terms, and Divide by Two:

$$\sum X_i Y_i = a \sum X_i + b \sum X_i^2$$
$$\sum Y_i = na + b \sum X_i$$

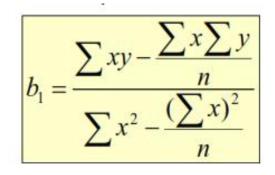
V. Solve the Normal Equations for the Unknowns, a and b:

$$b = \frac{n \sum X_i Y_i - \sum X_i \sum Y_i}{n \sum X_i^2 - (\sum X_i)^2}$$

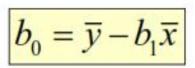
$$a = \frac{\sum Y_i}{n} - b \frac{\sum X_i}{n}$$

The least squares method

Slope for the Estimated Regression Equation



Intercept for the Estimated Regression Equation



where:

 x_i = value of independent variable

 y_i = value of dependent variable

 \overline{x} = mean value for independent variable

 \overline{y} = mean value for dependent variable

n =total number of observations

Least Squares Regression Properties

- The sum of the residuals from the least squares regression line is 0 ($\sum (y \hat{y}) = 0$)
- The sum of the squared residuals is a minimum (minimized $\sum (y \hat{y})^2$)
- The simple regression line always passes through the mean of the y variable and the mean of the x variable
- The least squares coefficients are unbiased estimates of β₀ and β₁

Example

The relationship between the density and salinity concentration in water is given by the following formula: = $_{0}$ + (.C).

By using regression lines equations, Find the constants ($_{o}$,), by using data below.

998	998.8	1000.4	1002	1003.6	1005.2
0	0.002	0.006	0.01	0.014	0.018
n	у	x	x.y	x^2	
j	1 998	C) 0	0	P
	998.8	0.002	1.9976	0.000004	
	1000.4	0.006	6.0024	0.000036	
	1002	0.01	10.02	0.0001	
	1003.6	0.014	14.0504	0.000196	
	1005.2	0.018	18.0936	0.000324	
	5				
	х	у	ух	x2	
	6008	0.05	50.164	0.00066	
	400	b			
	998	а			

Example

The relationship between the density and temperature is given by the following formula:

By using regression lines equations, Find the constants ($_{\rm o}$,), by using data below.

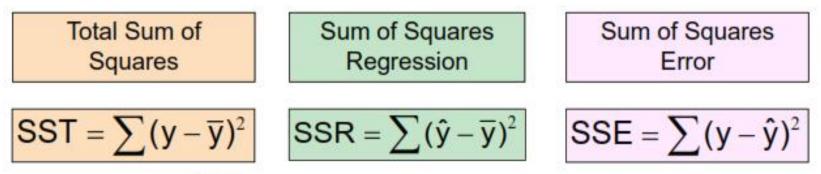
Density, (kg/m ³)	882.5	880	878.33	877.14	876.25
Temperature (C ^o)	20	25	30	35	40

N	Т	р	X	У	x.y	x2
1	20	882.5	0.05	882.5	44.125	0.0025
1	25	880	0.04	880	35.2	0.0016
1	30	878.33	0.033333333	878.33	29.27766667	0.001111111
1	35	877.14	0.028571429	877.14	25.06114286	0.000816327
1	40	876.25	0.025	876.25	21.90625	0.000625
			Х	у	ух	x2
5			0.176904762	4394.22	155.5700595	0.006652438
		b	250.0668089			
		a	869.9963981			

Explained and Unexplained Variation

Total variation is made up of two parts:

SST = SSR + SSE



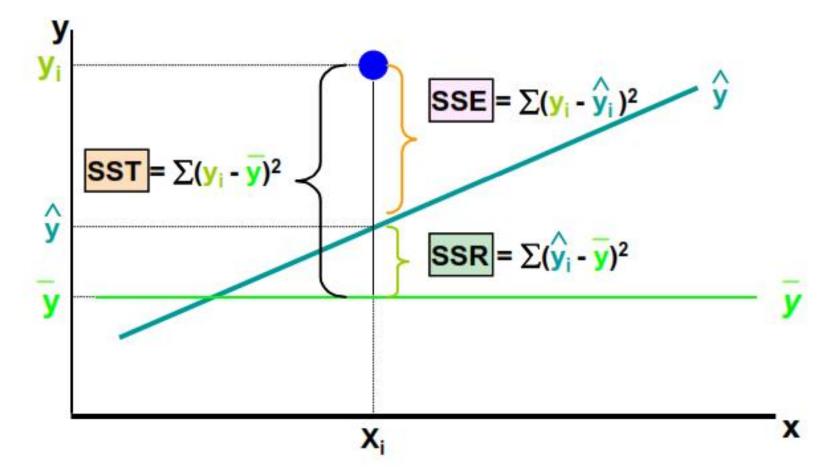
where:

- \overline{v} = Average value of the dependent variable
- y = Observed values of the dependent variable
- \hat{y} = Estimated value of y for the given x value

Explained and Unexplained Variation

- SST = total sum of squares
 - Measures the variation of the y_i values around their mean y
- SSR = regression sum of squares
 - Explained variation attributable to the relationship between x and y
- SSE = error sum of squares
 - Variation attributable to factors other than the relationship between x and y

Explained and Unexplained Variation



Coefficient of Determination, R²

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called R-squared and is denoted as R²

$$R^{2} = \frac{SSR}{SST} \text{ where } 0 \le R^{2} \le$$

Coefficient of Determination, R²

$\mathbf{R}^2 - \mathbf{S}^2$	SR_sl	um of squares explained by regression
SS SS	ST	total sum of squares

Note: In the single independent variable case, the coefficient of determination is

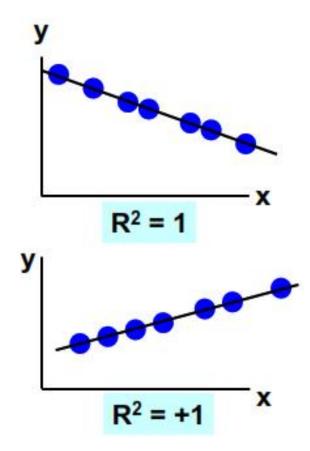
$$\mathbf{R}^2 = \mathbf{r}^2$$

where:

R² = Coefficient of determination

r = Simple correlation coefficient

Examples of R² Values

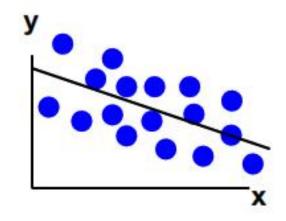


$$R^2 = 1$$

Perfect linear relationship between x and y:

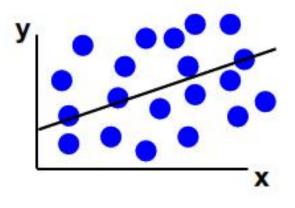
100% of the variation in y is explained by variation in x

Examples of R² Values



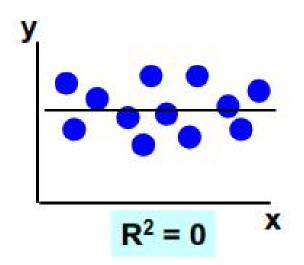
 $0 < R^2 < 1$

Weaker linear relationship between x and y:



Some but not all of the variation in y is explained by variation in x

Examples of R² Values



$$R^2 = 0$$

No linear relationship between x and y:

The value of Y does not depend on x. (None of the variation in y is explained by variation in x)